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1 Introduction

The relevant field configurations in the (euclidean) functional integral of a quantum

field theory are rather singular. In general, they are distributions for space-time with

dimension D ≥ 2 [1]. However the low energy properties are usually encoded by some

classical smooth field configurations. For such a reason topological effects usually arise

in the low energy regime. For instance, the structure of the quantum vacuum and the

existence of spontaneous symmetry breaking dependend very much on the geometry of

the space of static classical configurations with minimal effective energy. Semiclassical

solutions of the euclidean motion equations also play a certain role in the analysis of the

quantum tunnelling between classical vacua and the existence of a mass gap. From a

functional integral viewpoint the role of those smooth configurations can be understood

in terms of the dominance of the weight of neighbor singular configurations with relative

momentum bigger than an effective low momentum scale [2].

In general, the lagrangians of local field theories have two kind of terms: ultralocal

(without field derivatives) potential terms and generalized kinetic terms which are respon-

sible for the interaction and its propagation, respectively. Propagating terms are usually

quadratic in fields and spacetime derivatives. For those generic systems the classical

properties which are relevant for the quantum theory are encoded by the minima of the

potential term (static solutions, kinks, solitons, monopoles, etc.) or dynamic solutions

which minimize the energy functional (instantons). Minima of the potential constitute

the basic building bricks of the quantum vacuum, and instantons with non-trivial tun-

nelling contribution are very relevant for the determination of its final structure.

A new type of physical phenomena arises when there is no ultralocal potential term

and there are interactions linear in space-time derivatives [3]-[5]. In such a case the

low energy regime has a richer structure and new topological effects arise. The domi-

nant terms of the effective action at low energy are linear in space-time derivatives and

therefore if we neglect the irrelevant terms the effective theory becomes singular from

the canonical formalism viewpoint. The analysis of the constraints of the effective the-

ory leads to a reduced phase space (moduli space) which can be quantized by means

of geometric/holomorphic methods. The difference with the standard case (ultralocal
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potential + quadratic propagating term) is that in the later the low energy physics can

be inferred from a semiclassical analysis of the effective action which does not require

an exact quantization, whereas in the former case, instead of averaging over collective

coordinates it is necessary to quantize the reduced theory over its moduli space, although

in many cases the semiclassical quantization is also exact. The infrared limit defines a

new phase of the theory, the topological phase, which has a very peculiar (universal) be-

haviour. Generically speaking, in this phase there are no local degrees of freedom and the

only observables are topological invariants [6] (see [7] for a review). Witten conjectured

the consistency of quantum gravity in a topological phase [8]. The notion of topological

phase is very different of the geometric phase which generalizes Aharonov-Bohm and

Berry’s phases [9] and should not be confused with it.

For such systems there is a dual relationship between the quantum field theory and its

low energy effective theory which is very peculiar and merits some attention. Usually, the

topological theory which emerges from the infrared limit (topological phase) is simpler

and in many cases it is exactly solvable. Therefore it would be very interesting to learn

how to extract information about the quantum theory from its topological phase. On the

other hand since topological theories are usually singular, fully fledged quantum theories

can be used as ultraviolet regularizations of their topological limits. From this point of

view it is also interesting to analyze the possible dependence (if any) of the topological

observables defined in the topological theory on the method of ultraviolet regularization.

Although the low energy regime is dominated by smooth configurations the topo-

logical theory defined by the relevant terms of the effective action is more singular (e.g

dominant configurations in the functional integral are more singular distributions). After

elimination of all spurious degrees of freedom and factorization of a divergent factor the

functional integral becomes more regular, e.g. the Haussdorff dimension of the quantum

fields is renormalized to zero. However, if the quantization is carried out before the

elimination of the spurious degrees of freedom the corresponding quantum theory might

exhibit an anomalous behavior induced by the quantum effects of non-topological degrees

of freedom. In the case of Chern-Simons theory it has been shown that such an anomaly

does not appear in the canonical formalism [10][11], but it is still unclear whether it arises

or not in the covariant formalism by the fluctuation of non-physical degrees of freedom.
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In this paper we analyze the low energy regime of some quantum systems with non-

trivial topological phases in order to clarify the connection between topological theories

and ordinary quantum theories defined on arbitrary manifolds. A special emphasis is

put on the study of the dependence on the background metric of the manifold. The

main purpose would be to understand the relationship between topologically massive

Yang-Mills theories in 2 + 1 dimensions and Chern-Simons theory defined on arbitrary

three-dimensional manifolds. We shall focus on the analysis of the partition function

because it is the most sensitive observable under changes of space-time metrics.

The organization of the paper is as follows. In section 1 we analyze the low energy

limit of some simple quantum systems with interactions linear in time derivatives. In par-

ticular, we point out the existence of a certain dependence on the regularization method.

The same analysis, carried out in section 3 for Yang-Mills theories with Chern-Simons

interactions shows the uniqueness of the quantum vacuum in the infinite volume limit.

Finally we discuss in section 4 the background metric dependence of the partition func-

tion of Chern-Simons theory in the covariant formalism using a geometric regularization

of ultraviolet divergences which is related to topologically massive Yang-Mills theory.

We show that the topological character is enhanced for some particular choice of the

regulators and metrics of space-time manifolds.

2 Topological phases in quantum mechanics

Before discussing Chern-Simons theory we analyze some simpler similar pure quantum

mechanical models. These systems have their own interest for different physical applica-

tions [12]-[15], although their role here is simply to illustrate and clarify the main features

of topological phases of quantum theories.

The models describe the interaction of a point-like charged particle constrained to

move in some submanifolds of IR3 with a magnetic field.

The classical lagrangian is

L =
1

2
m~̇x

2
+ e ~A.~̇x (2.1)

where m and e are the mass and charge of the particle and ~A is the vector potential

of the magnetic field ~B = ~∇× ~A. The topological limit m → 0 correspond to the case
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where the lagrangian

L = e ~A.~̇x (2.2)

is linear in time-derivatives [3]-[5].

The corresponding quantum system is defined by the following Hamiltonian

IH = − 1

2m
(~∇− ie ~A)2, (2.3)

which in the topological limit m → 0 becomes singular except in the subspace of null

eigenvalues. Generically speaking, there are not null eigenvalues and the topological limit

only makes sense after a (divergent) renormalization of IH which cancels the ground state

energy. The space of quantum states is then reduced to the subspace of ground states of

IH (reduction of Hilbert space).

When the particle is constrained to move in a submanifold of IR3 we obtain a family

of systems with different topological limits which depend on the geometry of the sub-

manifold M and the form of the magnetic fields. In the general case the classical system

is described on the phase space T ∗M with the symplectic structure ω0 + ω defined by

the sum of the canonical form ω0 and the 2-form ω of M associated to the magnetic

field. Quantization is only possible if 1
2πω is an integer form, i.e. 1

2π [ω] ∈ H2(M,ZZ).

In that case the quantum states are defined by sections of a line bundle E(M,C) with a

connection A whose curvature ωA = dA = π∗ω is the pull-back of ω by the projection

map π : E → M of the bundle E(M,C). If M is an oriented Riemannian manifold the

quantum Hamiltonian is of the form

IH = − 1

2m
∆A, (2.4)

where ∆A = d∗AdA, d
∗
A = (−1) ∗ dA∗ is the adjoint of the covariant differential dA and ∗

is the Hodge operator associated to the Riemannian structure g of M .

2.1 Planar Rotor

The first model describes the interaction of a charged particle moving on a circle S1 =

{~x ∈ IR2; ||~x|| = 1} with a magnetic field vanishing on S1 but with non-trivial magnetic

flux across S1 [12]. The corresponding vector potential can be expressed in cylindric
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coordinates by Aθ = φ/2π, Ar = 0, Az = 0, and satisfies the two conditions: ~B =

~∇× ~A = 0 for r 6= 0 and ∫

S1

~Ad~γ =

∫

D

~Bd~σ = φ 6= 0.

The quantum dynamics is given by the Hamiltonian

IH = − 1

2m

(
∂θ − i

eφ

2π

)2

(2.5)

with periodic boundary conditions ψ(0) = ψ(2π). The spectrum of IH is

En =
1

2m
(n− ε)2 (2.6)

where ε = eφ/2π.

1/2 1

ε

 n
E

n=1 n=0

n=2n=-1

Figure 1

Low energy levels of the planar rotor Hamiltonian for 0 ≤ ε ≤ 1. The thick
curves represent the ground state energies and the cusp at ε = 1/2 the
transition point where the ground state is degenerated.
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The ground state is unique for ε 6= (2n + 1). However for ε = (2n + 1) the system

exhibits a very peculiar behaviour [12], which is reflected by the fact that the ground

state is doubly degenerated. The existence of this degeneracy can be explained by the

presence of complex interactions which prevent the application of the min-max principle

to prove the uniqueness of the ground state. We remark that the classical SO(2) sym-

metry is preserved after quantization. The ground state subspace spans two irreducible

representations of SO(2) for ε = (2n+ 1) and only one in the other cases.

Consequently, in the topological limit m → 0 the infinite dimensional Hilbert space

is reduced to a finite dimensional one

H0
ε =

{
C ε 6= (2n+ 1)

C2 ε = (2n+ 1).
(2.7)

From a classical point of view the reduced phase space is a single point in both cases

because ω = 0. Therefore, quantization from this reduced phase space leads to the

same Hilbert space H0
ε = C and Hamiltonian IH = 0 in both cases. Thus, the peculiar

behaviour of the case ε = (2n+1) is not observed if the constraints are eliminated before

quantization.

The topological phase of the quantum system is independent of the metric of the world

(time) line because of the time reparametrization invariance, and is also independent of

the metric of the target space S1 used in the regularization. In this case both classical

properties are preserved under quantization unlike for the systems to be considered below.

The difference between the two types of topological quantum phases generated by the

planar rotor is encoded by a (metric independent) topological invariant

∫

S1

~Ad~γ

2.2 Magnetic Monopole

We now consider the interaction of a charged particle constrained to move on a two

dimensional sphere S2 = {~x ∈ IR3; ||~x|| = a} with a Dirac’s magnetic monopole

~B = g
~x

||~x||3 . (2.8)
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Although there is no global regular vector potential ~A over the whole sphere S2 with

~B = ~∇× ~A, there are vector potentials of B

~A±
j = ±g εj3kx

k

||x||(||x|| ± x3)
,

which are only singular at the north and south poles, respectively.

The quantum Hamiltonians

IH = − 1

2m
(~∇− ie ~A±)2 (2.9)

are not univocally defined as selfadjoint operators on a functional Hilbert space unless

the magnetic flux across the sphere S2,

e

∫

S2

~Bd~σ = 4πeg

is quantized k = 2eg ∈ ZZ (Dirac’s quantization condition [13]). This topological (metric

independent) condition implies that ~A± defines a connection on a line bundle E(S2,C)

with first Chern characteristic number c1(E) = k [16].

Since the metric of S2 induced from IR3 is SO(3) invariant there is a horizontal lift of

this symmetry to an action of its universal covering group SU(2) on E(S2,C). Because

of the non-trivial magnetic flux the generators of this action pick up an additional term

Ls = εijsx
i∇j

A − k

2

xs

||~x|| (2.10)

which is necessary to preserve the SO(3) symmetry of the quantum Hamiltonian [IH, Lr] =

0 and the SO(3)-Lie algebra commutation relations

[Lr, Ls] = εrstLt. (2.11)

The induced representation of SU(2) on the space of sections of E(S2,C) can be decom-

posed into irreducible representations Hl
k parametrized by the eigenvalues of the second

Casimir operator L2 = LiL
i,

1

4
(|k|+ 2l)(|k|+ 2l + 2) l ∈ IN

whose degeneracy is given by the Frobenius reciprocity theorem

dim Hl
k = |k|+ 2l+ 1. (2.12)
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The spectrum of the Hamiltonian can be easily obtained from symmetry arguments or

by the following explicit calculation.

In the complex coordinates

z = aeiϕtanθ/2

z̄ = ae−iϕtanθ/2

the Hamiltonian (2.9) reads

IH = − 1

2m

[
(1 +

zz̄

a2
)2∂∂̄ +

k

2a2
(1 +

zz̄

a2
)(z∂ − z̄∂̄)− k2

4a4
zz̄

]
. (2.13)

The spectrum can be easily obtained by means of the following similarity transformation

ψ(z, z̄) = (1 +
zz̄

a2
)−k/2ξ(z, z̄) (2.14)

which transforms the Hamiltonian (2.13) into

IH′ = − 1

2m

[
(1 +

zz̄

a2
)2∂∂̄ − k

a2
(1 +

zz̄

a2
)z̄∂̄ − k

2a2

]
. (2.15)

The eigenfunctions of IH′ are

ξln(z, z̄) = zjP
(j,|k|−j)
l

(
a2 − zz̄

a2 + zz̄

)
l = 0, 1, 2, . . .
j = −l,−l+ 1, . . . , l + |k| (2.16)

where P
(i,j)
l (i, j ≥ −l) are the Jacobi polynomials [17]. The corresponding eigenvalues

El =
1

2ma2

[
|k|(l + 1

2
) + l(l + 1)

]
l = 0, 1, 2, . . .

have degeneracies

2l+ |k|+ 1

which are in agreement with the Frobenius reciprocity theorem requirements (2.12). In

particular, the ground states are expanded by the analytic functions

ξ(z) = zl, l = 0, . . . , |k|

and have non-trivial degeneracy, |k|+1, whenever the magnetic monopole charge is non-

null. Since the bundle E(S2,C) is non-trivial for k 6= 0, every stationary state must
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have nodes i.e. vanishing points. In the holomorphic representation the origin z = 0 and

infinity z = ∞ are nodes of the basis of eigensections (2.16) of IH.

In the topological limit m→ 0 the Hilbert space is reduced to the finite dimensional

space

H0
k = {ξ(z) =

|k|∑

l=0

clz
l}

of analytic sections of E(S2,C) which are holomorphic with respect to the complex struc-

ture induced by the connection A, the magnetic field B and the Riemannian metric of

S2. The Hilbert space H0
k spans an irreducible representation of SU(2) with angular

momentum |k|/2 and dimension dim H0
k = |k| + 1. The result of the topological limit

is in agreement with that obtained by holomorphic quantization [18] from the reduced

phase space (S2, ω = 2πikdz̄ ∧ dz). However, this result might depend on the choice of

the metric of the configuration (target) space. In this example the background metric of

S2 is maximally symmetric (SO(3)-invariant), but for a generic metric the degeneracy

of the ground state is lower. This fact shows that a good prescription for using the

topological limit as a method of quantization of a topological theory should be based

on the most symmetrical metric of the configuration space in order to preserve as much

classical symmetries as possible. Even in such a case some quantum anomalies might

appear in the space of the space of quantum states which require a central extension of

the classical symmetry group. In order to obtain a (target space) metric independent

quantum theory it is necessary not only a renormalization of the vacuum energy, but also

a metric dependent operatorial renormalization of the Hamiltonian which is not usually

considered in standard renormalization scheme prescriptions.

2.3 Hall effect on a Torus

We now consider the interaction of a charged particle moving on a torus T 2 with a

constant magnetic field, || ~B|| = B = cte. In complex coordinates z = x1+ix2, z̄ = x1−ix2
the quantum hamiltonian

IH = − 1

2m

[
4∂∂̄ + eB(z∂ − z̄∂̄)− e2B2

4
zz̄

]
(2.17)
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is uniquely defined as selfadjoint operator iff the magnetic flux across the torus
∫

T 2

~Bd~σ = B

is quantized k = eB/2π ∈ ZZ (Dirac’s condition). This topological constraint implies that

the vector potential Ai = −B εijx
i/2 defines a connection on a line bundle E(T 2,C)

with first Chern number c1(E) = k. The quantum states are the L2-sections of E(T 2,C).

Continuous sections of E satisfy the boundary conditions 1

ψ(z + 1, z̄ + 1) = ekπ(z−z̄)/2ψ(z, z̄)

ψ(z + i, z̄ − i) = e−ikπ(z+z̄)/2ψ(z, z̄)
(2.18)

and because of the non-triviallity of E (for k=0) must have nodes at some points of T 2

for non-vanishing magnetic flux. The classical translation U(1)2 symmetry of the planar

metric of T 2 becomes anomalous when lifted to the line bundle E. The minimal lift of the

corresponding generators does not commute with the quantum Hamiltonian (2.17) and

does not satisfy the translation Lie algebra commutation relations. A central extension

of the Lie algebra U(1)2 which leaves invariant the quantum Hamiltonian (2.17) can be

obtained by adding a new term to the infinitesimal generators

p = ∂ +
kπ

2
z̄ p̄ = ∂̄ − kπ

2
z, (2.19)

in a similar way to the SO(3) symmetry in the case of magnetic monopole (2.10). The

corresponding quantum Lie algebra is a Heisenberg algebra

[p, p̄] = −kπ. (2.20)

The spectrum of the Hamiltonian (2.17) can be obtained by means of a similarity trans-

formation

ψ(z, z̄) = ekπzz̄/2ξ(z, z̄) (2.21)

which yields

IH′ = − 1

2m

[
4(∂ − kπz̄)∂̄ − 2kπ

]
(2.22)

1There is a phase ambiguity in the choice of boundary conditions due to the non-
simply connected character of the torus (Aharonov-Bohm phase). The prescription (2.18)
(trivial phases) corresponds to the standard notation in the description of the quantum
Hall effect [15] and has the nice property of preserving general covariance.
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with

ξ(z + 1, z̄ + 1) = eiπkz+kπ/2ξ(z, z̄)

ξ(z + i, z̄ − i) = e−iπkz+kπ/2ξ(z, z̄) (2.23)

as boundary conditions. The eigenfunctions can be expressed as infinite sums of eigen-

functions of a harmonic oscillator which satisfy the boundary conditions (2.23). Their

eigenvalues are given by Landau levels

Ej
n =

2πk

m
(n+ 1/2)

n = 0, 1, 2, . . .
j = 0, . . . , |k| − 1

(2.24)

with degeneracy |k|. The ground state degeneracy |k| can be understood by the failure

of min-max principle in presence of complex interactions. The corresponding eigenfunc-

tions are the holomorphic sections of E(T 2,C) (i.e. theta functions) with respect to the

complex structure induced by the vector potential A, and the complex structure of the

torus T 2

ξj0(z) = ekπz
2/2Θ

[
j/|k|
0

]
(|k|z, i|k|)

= ekπz
2/2

∑

l∈ZZ+j/|k|

e−π|k|l2+i2π|k|lz

j = 0, 1, 2 . . . , |k| − 1.

In the topological limit the Hilbert space is reduced to the ground state subspace

H0
k = {ξ(z);

|k|∑

j=1

cjΘ
j
|k|(z)}

if the vacuum energy renormalized to zero. The results of this quantization method does

coincide with that obtained via holomorphic quantization from the reduced phase space.

In the present approach the result is again independent of the world line metric but it

does depend on the (target space) T 2 metric. In fact, the reduced Hilbert space is smaller

when the T 2 metric is not translation invariant. Once more this symmetry (although

anomalous) is the guiding principle to quantize in agreement with holomorphic quantiza-

tion. Actually, the same result is obtained for any other flat metric of T 2 corresponding
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to a different point τ in moduli space. In this case the vacuum states are also given in

terms of the corresponding theta functions [19]

ξjτ (z) = ekπz
2/2ImτΘ

[
j/|k|
0

]
(|k|z, |k|τ)

= ekπz
2/2Imτ

∑

l∈ZZ+j/|k|

eiτπ|k|l
2+2πi|k|lz

j = 0, 1, 2 . . . , |k| − 1.

and

dim Hτ
k = dim H0

k = |k|.

Absolute independence of the T 2 metric would require a non-standard renormalization

of the regularized Hamiltonian modifying its operator structure.

Let us analyze, for completeness, the holomorphic quantization approach [18]. A

classical constraint analysis of singular systems described by lagrangians of the form

(2.1) shows that the conditions

pi = eAi i = 1, 2 (2.25)

are second class constraints

{pi − eAi, pj − eAj}PB = eBεij 6= 0 i = 1, 2. (2.26)

If we perform a non-canonical transformation of the phase space T ∗(T 2)

x′i = xi (2.27)

p′i = pi − eAi i = 1, 2 (2.28)

the symplectic structure of T ∗(T 2) becomes

ω′ =
∑

i=1,2

dp′i ∧ dxi + eBdx1 ∧ dx2. (2.29)

The constraints in the new coordinates (xi, pi) read

p′i = 0 i = 1, 2. (2.30)
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The classical method of dealing with second class constraints proceeds by restriction to

the constraints submanifold p′i = 0, i = 1, 2. In this case it can be identified with the

configuration space T 2 endowed with the symplectic structure defined by the magnetic

field F = 2πkdx1∧dx2 which is the restriction of the symplectic form ω′ to the constraints

manifold T 2. There are not further constraints.

Holomorphic quantization of the reduced phase space T 2 gives rise to a finite dimen-

sional Hilbert space

H0
k = {ξ : T 2 → E; ξ is analytic}

whose quantum states ξ are the holomorphic sections of a line bundle E(T 2,C) with

Chern class number c1(E) = k.

The dimension of the space of quantum states is given by the Riemann-Roch formula

dimH0
k =

1

8π

∫

T 2

√
gR+

1

2π

∫

T 2

F = k, (2.31)

and the quantum hamiltonian is trivial H = 0 as corresponds to a topological theory.

The same Riemann-Roch formula gives account of the right degeneracy (k + 1) of the

vacuum states in the monopole case of Section 2.2. There is similar formula for magnetic

holomorphic fields on higher genus (g) Riemann surfaces 2 [20]

dimH0
k =

1

8π

∫

T 2

√
gR+

1

2π

∫

T 2

F + dimH0
2g−2−|k|. (2.32)

In the topological limit of the quantum system associated to the Hall effect we have

obtained the same results in a different way. One interesting aspect of the geometrical

method based on the topological limit is that it shows the way physical constraints arise

in the topological phase. Before taking the topological limit the momentum operators

are given by

iΠ = ∂ − πk

2
z̄ iΠ̄ = −∂̄ − πk

2
z (2.33)

or

iΠ′ = ∂ − πkz̄ iΠ̄′ = −∂̄ (2.34)

once the similarity transformation (2.21) has been carried out. In the subspace of ground

states the first constraint Π̄′ = 0 is satisfied in the strong operatorial sense. However

2The last term in (2.32) vanishes for 2g − 2 − |k| ≥ 0 (Kodaira’s vanishing theorem)
but not in general, as erroneously indicated in Ref. [21].
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the second constraint Π′ = 0 is only satisfied in a weak sense as the Lorentz condition in

QED in the Gupta-Bleuler formalism: its expectation value vanishes

(ξ1,Πξ2) =

∫

T 2

dzdz̄

2πi
e−πkzz̄ ξ̄1(z̄)(∂ − πkz̄)ξ2(z) = 0 (2.35)

on ground states. Therefore in the topological limit since H → H0
|k| both constraints are

satisfied in the strong operatorial sense. Notice that the second constraint Π′ = 0 also

arises in holomorphic quantization from the commutation relations (2.20) implied by the

non-trivial symplectic structure F of T 2. However, in the geometrical approach different

topological limits impose further constraints derived from a different operator ordering

prescription or a different choice of (target space) Riemannian metric.

2.4 Quantum Hall effect on the infinite plane

We now consider the same system with the charged particle moving on the plane IR2

under the effect of a constant magnetic field. The quantization of the system proceeds

in a similar manner to the previous case, but without the requirement of quantization of

the magnetic flux across the plane. The spectrum of the Hamiltonian (2.22) is given by

the classical Landau levels

Ej
n =

2πk

m
(n+ 1/2)

n = 0, 1, 2, . . .
j = −n,−n+ 1, . . . ,

(2.36)

which now are infinitely degenerated due to the absence of boundary conditions. The

eigenfunctions can be expressed in this case in terms of generalized Laguerre polynomials

[22]

ξjn(z, z̄) = zjLj
n(2πk|z|2). (2.37)

The above spectrum can be obtained from that of the torus in the infinite volume limit

when the magnetic field B → ∞ in such a way that the density of magnetic flux is

hold constant. In the same way, it can also be obtained from the monopole case when

the radius of the sphere a and the charge of the magnetic monopole k go to infinity

keeping the ratio k/a2 constant (see e.g. [17]). In both cases the limit is well defined

and the eigensections of the sequences of line bundles E(T 2,C) and E(S2,C) tend to

square integrable functions of L2(IR2). The degeneracy of all energy levels grows with

the Chern number of E, k, towards the infinite Landau degeneracy. This phenomenon
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does not occur in Chern-Simons theory, as it will be shown in next section, where the

infinite volume limit of theory on a torus reduces the subspace of ground states to the

single unique ground state over IR2. In that case the degeneracy disappears in the infinite

volume limit. The analogous phenomenon here arises in the limit of infinite volume for

the torus when the magnetic charge is kept k constant.

The topological phase (m→ 0) corresponds to the system described by the low lying

Landau levels

H0
k = {ξ : IR2 →C; ∂̄ξ = 0 i.e. ξ is analytic}.

The main peculiarity of this phase is that it has an infinite dimensional Hilbert space

which does not describe local interactions. The space of quantum states has a natu-

ral (ground) ring structure and describes an infinite dimensional representation of the

Heisenberg group which emerges as the quantum symmetry associated classical trans-

lation invariance. Finally, it is easy to see that the structure of the topological phase

changes when we consider a different Riemannian metric in IR2. Generically, the Heisen-

berg group does not leaves the space of quantum states invariant.

3 Topological Phases of (2 + 1)-Dimensional

Gauge Theories. Chern-Simons Theory.

In 2+ 1 space-time dimensions gauge theories have a very interesting infrared structure.

The presence of a Chern-Simons gluonic interaction, which can arise as an effective

interaction induced by massless fermions, implies the existence of gauge invariant phases

with massive gluons [23][25]. In such a case, although the gauge interaction is short-

ranged, the quantum vacuum exhibits a very rich topologically dependent structure which

reveals the existence of non-trivial topological phases [24].

In this Section we shall review some aspects of the vacuum structure of topologically

massive Yang-Mills theory (degeneracy, vacuum nodes, anomalous angular momentum)

and its topological phase (Chern-Simons theory). The approach will be analogous to

the one used in Section 2 for topological quantum mechanics, but with some interesting

physically meaningful differences. Since, pure Chern-Simons theory is exactly solvable

for compact Lie groups [10] its interpretation as a topological limit of a massive Yang-
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Mills theory provides a very interesting information about the structure of the vacuum

of the massive theory. On the other hand the massive theory can be considered as a

regularization of the pure Chern-Simons theory [11][25]-[27] which might be useful for

the analysis of singular observables and possible ambiguities of the theory.

The massive Yang-Mills action

SΛ(A) =
ik

4π

∫

M3

tr (A ∧ dA+
2

3
A ∧ A ∧ A) + k

8πΛ
||F (A)||2 (3.1)

is not univocally defined for gauge fields A of any principal bundle P (M,SU(N)). The

value of the Chern-Simons term depends on the section of P chosen in the expression

(3.1) and is not invariant under large gauge transformations of that section. The variation

of SΛ(A) is 2πk times the winding number of the gauge transformation. Therefore, a

consistent definition of the Euclidean functional integral is only possible for integer values

of Chern-Simons charge k. We use the compact notation of Ref. [28], where || || denotes
the norm associated to the scalar products of p-forms

(τ, η) = −2

∫

M3

tr τ ∧ ∗η (3.2)

and ∗ is the Hodge operator associated to the (oriented) space-time metric (M3, g).

3.1 Canonical Quantization

In the case of space-times of the form M3 = Σ × IR with a direct product metric it is

possible to develop a canonical approach. If we consider the temporal gauge (A0 = 0),

the only degrees of freedom are the spatial components A of the gauge fields A = (A, A0)

with their momenta constrained in the phase space T ∗(AΣ) by Gauss law

d∗
A
(Π +

1

2κ2
∗A) = κ−2 ∗ F (A). (3.3)

Here AΣ denotes the configuration space of two dimensional gauge fields A on the Rie-

mann surface Σ with SU(N) as structure group, κ is the Chern-Simons coupling constant

κ =
√
4π/k and d∗

A
= −∗d

A
∗ is the adjoint of the covariant derivative d

A
operator with

respect to the scalar product defined on AΣ by (3.2). The classical Hamiltonian is given

by

H =
κ2Λ

2
||Π+

1

2κ2
∗A||2 + 1

2κ2Λ
||F (A)||2. (3.4)
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In the Schrödinger representation canonical quantization gives the following prescription

for the momentum operator

IΠ = −i δ
δA

. (3.5)

The quantum Hamiltonian IH is then obtained by introducing such a prescription for

the quantum momentum IΠ into the expression (3.4) of the classical Hamiltonian. There

is not ordering problem in the kinetic term because all orderings give rise to the same

quantum operator IH. The quantum states are given the complex functionals ψ(A) on AΣ

(from here on denoted A, for simplicity) which satisfy the quantum Gauss law condition

−id∗
A

δ

δA
ψ(A) =

1

2κ2
∗ dA ψ(A). (3.6)

This condition has a simple geometric interpretation in terms of the hermitian U(1)

connection defined by

α̃κ =
1

2κ2
∗A+

1

κ2
d
A
G

A
∗ F (A) (3.7)

with G
A

= (d∗
A
d
A
)−1. Actually, the quantum Gauss law condition (3.6) can be written

as

d∗A∇
α̃κ
ψ(A) = 0 (3.8)

with

∇
α̃κ

=
δ

δA
+ iα̃κ,

which means that the quantum states are covariantly constant along the gauge fibers

with respect to the connection α̃κ. The existence of non-trivial solutions of the quantum

Gauss condition (3.8) is possible iff the connection α̃κ is trivial along the orbits of the

group of gauge transformations G. The curvature 2-form of α̃κ

Ω̃κ(τ̃ , η̃) = − 1

2κ2
(τ̃ , ∗η̃) + 1

κ2
(G

A
∗ [τ̃ , η̃], ∗F (A)) (3.9)

vanishes for vectors τ̃ , η̃ ∈ TA(A) tangent to the gauge fibers τ̃ = d
A
φ. However, α̃κ is

trivial only if the holonomy group associated to any closed curve contained in a gauge

orbit is trivial. This is only possible if the projection Ωκ of the curvature 2-form Ω̃κ to

the space of gauge orbits M = A/G,

Ωκ(τ, η) = Ω̃κ(τ̃
h, η̃h) (3.10)
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belongs (modulo a factor 2π) to an integer cohomology class of M, i.e.

1
2π [Ω] ∈ H2(M,ZZ). (3.11)

τ̃h denotes the horizontal component of any tangent vector τ̃ ∈ TA(A) with projection τ ∈
T[A](M) which is orthogonal to the gauge fiber at A i.e. τ̃h = PAτ̃ , PA = (I−d

A
G

A
d∗
A
)

being the corresponding orthogonal projector.

The condition (3.11) is satisfied if and only if the Chern-Simons charge k is an integer.

In this way the quantization condition of k also arises in the canonical formalism. Al-

though, the above derivation of this consistency condition is very different of that given

in the covariant functional integral formalism, both have a common origin: gauge invari-

ance under large gauge transformations [29]. Because of the triviallity of α̃κ when k is an

integer, the action of the group of gauge transformations G can be globally lifted to an

action on the line bundle A×C(A,C). Gauss law implies the invariance of the quantum

states under this action and then the quantum states can be completely characterized by

sections of the line bundle Ek(M,G) defined by the gauge orbits Ek = A ×C/G of such

an action. In the same way, the connection α̃κ of A ×C projects down to a connection

ακ in Ek and the quantum Hamiltonian can be expressed as an operator

IH =
κ2Λ

2
||∇ακ ||2 +

1

2κ2Λ
||F (A)||2 + Λ

2κ2
(GA ∗ F (A), ∗F (A) (3.12)

acting on the sections of Ek. The Chern class of the line bundle Ek(M, C) is non-trivial
c1(Ek) = k. Therefore the quantum dynamics of the topologically massive Yang-Mills

theory is very similar to that of the magnetic monopole on S2 and the quantum Hall

effect on a torus. There are however some differences due the presence of additional

interacting terms, and the infinite dimensional character of the Yang-Mills configuration

space M which generates some ultraviolet divergences and require renormalization. The

similarity with the quantum mechanical models suggests the existence of low energy

physical effects related to the topological structure of the orbit space. We summarize in

next section the main relevant topological properties of the orbit space M of gauge fields

on Riemann surfaces [30].
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3.2 Topology of the Orbit Space

The space of the gauge orbits MG
Σ of connections defined on principal bundles over a Rie-

mann surface Σ with structure group G is not connected in general. Each connected com-

ponent contains the orbits of gauge fields defined on the same principal bundle P (Σ, G).

The set of connected components of MG
Σ is therefore equal to the set of equivalent classes

principal bundles [30]

π0(MG
Σ) = Ȟ1(Σ, G

˜
). (3.13)

This simplest way of describing Ȟ1(Σ, G
˜
) is by means of homotopy classes [Σ, BG] of

maps from the Riemann surface Σ into the classifying space BG of G,

π0(MG
Σ) = [Σ, BG].

Since BG is the base manifold of the universal bundle EG(BG,G) [31] and EG is con-

tractible, the following exact sequence of homotopy groups

0 ≡ πn(EG) → πn(BG) ↔ πn−1(G) → πn−1(EG) ≡ 0 (3.14)

establishes an isomorphism πn(BG) ≡ πn−1(G) between the homotopy groups of BG

and G. This yields the following results

[Σ, BU(1)] = ZZ

[Σ, BSU(N)] = 0.

In the case of abelian gauge fields the U(1)-principal bundles are classified by the first

Chern class c1(P ). Higher homotopy groups of every component ofMG
Σ can be calculated

in a similar way. The results are

π1(MU(1)
Σ ) = ZZ

2g

π1(MSU(N)
Σ ) = 0

π2(MU(1)
Σ ) = 0

π2(MSU(N)
Σ ) = ZZ.

The cohomology classes of MG
Σ can be calculated in a similar manner by using Thom’s

theorem [30][33]

H1(MU(1)
Σ ,ZZ) = ZZ

2g
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H1(MSU(N)
Σ ,ZZ) = 0

H2(MU(1)
Σ ,ZZ) = ZZ

g(2g−1)

H2(MSU(N)
Σ ,ZZ) = ZZ.

In the abelian U(1) case the orbit space can be identified with [30]

MU(1)
Σ = ZZ× S1 × · · ·

2g
× S1 × P (H), (3.15)

where P (H) = H/U(1) denotes the projective space of rays of a separable Hilbert space

H. The ZZ factor describes the different connected components of MU(1)
Σ character-

ized by the integer Chern number (magnetic charge) of the corresponding line bundles.

The S1 factors represent the moduli space of flat connections on Σ and P (H) contains

all transverse (non-flat) photon fluctuations. The first ZZ factor is responsible of the

zero homotopy group π0(MU(1)
Σ ), the second T 2g factor of the first homotopy group

π1(MU(1)
Σ ) = ZZ

2g and the last projective space P (H) of the second homotopy group

π2(MU(1)
Σ ) = ZZ

The above complete characterization of the abelian orbit space cannot be generalized

for the non-abelian case. In this case, the generator of the second cohomology group

Ȟ2(MSU(N)
Σ ,ZZ) is the 2-form [32][33]

Ω(τ, η) = − 1

16π2
(τ̃h, ∗η̃h) + 1

8π2
(G

A
∗ [τ̃h, η̃h], ∗F (A)), (3.16)

and the quantization condition of the Chern-Simons charge (3.11) can be easily under-

stood from the identity

Ωκ = 2πkΩ. (3.17)

The topological structure of MSU(N)
Σ is very similar to that of the configuration space of

the quantum mechanical examples considered in section 2. In the genus zero case Σ0 = S2

the Yang-Mills theory is reminiscent of the magnetic monopole case. In that case we

have shown the existence of an anomalous contribution to the angular momentum which

transmutates the spin and statistics (bosonic/fermionic) of charged quantum particles

moving around magnetic monopoles with odd magnetic charge. However in the gauge

theory case it has been shown that such a phenomenon does not occur [34]. Although

the second homotopy group of MSU(N)
Σ is non-trivial (ZZ), the orbits of the SO(3) are
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contractible and do not enclose any magnetic charge. Therefore the only effect of the

topological mass is to give an angular momentum k/|k| to the massive gluon, which does

not change its bosonic statistics [23].

3.3 Vacuum structure

Another physical consequence of the non-trivial topology of the orbit space is the ex-

istence of nodes in all quantum states including the vacuum. The phenomenon arises

because of the non-trivial character of the line bundle Ek(M, C) where physical states

are defined [34]. In pure 2 + 1-dimensional Yang-Mills theory Feynman argued that the

absence of nodes in the vacuum functional might imply confinement [35]. He also argued

that a generalization of the min-max principle would imply that the vacuum functional

ψ0(A) does not vanish for any classical gauge field configuration. In the presence of the

Chern-Simons term the min-max principle cannot be applied because of the complex char-

acter of the interaction as it was pointed out in section 2 for finite-dimensional quantum

models. Moreover, in that case the deconfinement mechanism is based on the massive

character of gluons which is also due to the presence of the complex Chern-Simons term.

In a genus zero Riemann surface Σ = S2 the locus of nodes of the vacuum functional

can be obtained from the analysis of the gauge anomaly of chiral fermionic determinants.

The effective gauge action of a chiral fermion W (A) = log det( /DA) theory satisfies the

gauge anomaly condition

d∗A
δ

δA
W (A) =

i

8π
∗ dA, (3.18)

which is identical to the Gauss law (3.6) constraint of physical states for k = 1 [32].

Therefore, any physical state of topologically massive Yang-Mills theory can be written

as

ψ(A) = ekW (A)ξ(A), (3.19)

ξ(A) being an arbitrary gauge invariant normalizable functional. Thus, the locus of

nodes of quantum vacuum states belongs to the set of the gauge field configurations A

with vanishing fermionic determinant. When the spatial Riemann surface is a S2 sphere

these configurations correspond to gauge fields A whose associated complex structures

are non trivial, i.e the hermitian connection Az defined by Az = 1
2 (A1 − iA2) is not a
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pure gauge U †∂U [36]. In such a case the set of gauge fields defined from global hermitian

connections,

Az = U †∂U

is dense in the space of gauge fields A, thus, the existence of nodes at such configurations

is only possible for the null state ψ(A) = 0.

The canonical theory is exactly solvable in the case of abelian gauge fields. The

Hamiltonian of Chern-Simons-Maxwell theory is quadratic in gauge fields

IH = −κ
2Λ

2
|| δ
δA

+
i

2κ2
∗A||2 + 1

2κ2Λ
||dA||2. (3.20)

and is very similar to the Hamiltonian of the quantum Hall effect. The only differences

come from the infinite dimensional character of the configuration space, the interaction

terms ||dA||2 and the existence of the Gauss law constraint. However, since IH commutes

with Gauss law operator

G = d∗A
δ

δA
− i

1

2κ2
∗ dA

stationary physical states (IHψ = Eψ, Gψ = 0) can be constructed from linear combina-

tions of eigenfunctionals of IH with the same energy.

In the case of genus zero or the infinite plane IR2 the orbit space is of the form

M = ZZ × P (H), and if we restrict ourselves to the sector without magnetic charge,

A = M × G (there is not Gribov problem). Consequently, any gauge field A can be

univocally splitted into its longitudinal and transverse components

A = A
⊥ + dφ. (3.21)

Since in S2 and IR2 there are not harmonic 1-forms the transverse component of A is

univocally defined by A
⊥ = (I − d∆−1d∗)A. Using the factorization (3.19) we can

express the physical states in terms of gauge invariant functionals ξ

ψ(A) = ekW (A)ξ(A), (3.22)

with

W (A) = − i

8π
(∗dA,∆−1d∗A).
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Using the splitting (3.21) and the factorization (3.22) the Hamiltonian becomes [11]

IH′ = −κ
2Λ

2
|| δ

δA⊥ ||2 + 1

2κ2Λ

(
∗dA⊥, (I +

Λ2

∆
) ∗ dA⊥

)
(3.23)

when acting on gauge invariant states ξ. The ground state in univocally given by [11]

ξ0(A) = exp{− 1

2κ2Λ

(
∗dA,∆−1(∆ + Λ2)1/2 ∗ dA

)
}. (3.24)

The apparent ∞-dimensional degeneracy associated to Landau levels is not present in

this case because Gauss law selects only one vacuum state (3.24). The ground state ξ0 has

infinite energy E0 = tr(∆ + Λ2)1/2 as usual in quantum field theory. Once this vacuum

energy is renormalized to zero, the topological limit (Λ → ∞) leads to a one-dimensional

Hilbert space H0
k = C with null Hamiltonian IH = 0. The result agrees with the one

obtained via canonical quantization of pure abelian Chern-Simons theory [10].

Higher energy states are given by the infinite dimensional generalization of Laguerre

polynomials and correspond to the free propagation of an arbitrary number of spin one

massive particles.

In the case of Riemann surfaces with higher genus it is necessary to introduce some

changes in the above picture. The canonical quantization of pure Chern-Simons theory

leads to a non-trivial quantum Hilbert space

Hg
k =C|k|g . (3.25)

The same result is obtained from the topological limit of the Chern-Simons-Maxwell

theory. The degeneracy arises in this case because not all the degenerated Landau states

are eliminated by Gauss law condition. In this case the transverse modes of the splitting

(3.21) contain some harmonic forms a which generate the T 2g factor of the orbit space

MU(1)
Σg

. Therefore we have a more complex splitting of gauge fields degrees of freedom

A = A
′⊥ + a+ dφ. (3.26)

The harmonic forms amust satisfy some periodic conditions to eliminate the overcounting

of Gribov copies. The Hamiltonian picks up and additional term governing the dynamics

of these variables which is similar to the quantum Hall effect on T 2g with topological

charge k. Consistency requires in this case that the Chern-Simons charge k be an integer
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3. Therefore, ground states are given by the product of the functional (3.24) and the

appropriated theta functions on T 2g. The vacuum degeneracy is |k|g in agreement with

the pure Chern-Simons approach.

In the Chern-Simons-Maxwell theory the ground states do not depend on the holo-

morphic component Az = 1
2 (A1 − iA2) of A. In fact, if we carry out the similarity

transformation associated to holomorphic quantization

ψ(A) = eAz̄Az/κ
2

ξ(A) (3.27)

the Hamiltonian becomes

IH′ = −κ
2Λ

2

(
δ

δAz
− 2κ−2 ∗Az̄

)
δ

δAz̄
+

1

2κ2Λ
||dA||2 + Λκ2trI (3.28)

in the complex coordinates Az, Az̄ of the configuration space A of gauge fields. The

second term of IH′ does not leave invariant the space of holomorphic functionals. For

this reason the ground states in the massive theory are not holomorphic. However in the

topological limit this term vanishes and we recover the holomorphic structure of pure

Chern-Simons quantum states.

The quantization in non-trivial magnetic backgrounds c1(P ) = n is also consistent

when the Chern-Simons charge k is an integer [38]. The degeneracy of the ground state is

metric independent and in the case of even topological charges k modular transformations

act trivially on the subspace of ground states over the T 2 torus .

The infinite volume case IR2 is similar to the genus zero S2 case and the ground

state is unique, as we have shown above. However, it can also be obtained from that

of any Riemann surface when its volume increases to infinity. For any finite volume

the associated torus T 2g of the orbit space has a constant volume (2π|k|)g which counts

the degeneracy of the quantum vacuum states. However this torus shrinks to a single

3Gauss law only imposes invariance under infinitesimal gauge transformations. If we
do not impose invariance under large gauge transformations it is possible to obtain a
consistent quantization for any value of k. This is equivalent to consider all the Gribov
copies of the fields a as inequivalent field configurations. In such a case the relevant orbit
space is H1(Σg, IR) × P (H) and the space Hg

k becomes infinite-dimensional. When k is
a rational number k ∈Q the symmetry group contains some large gauge transformations
and the Hilbert space remains finite-dimensional but with higher degeneracy than |k|g
[37]
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point in the infinite volume and in that case the quantum vacuum state becomes unique.

The other quantum states tend to the same state and the degeneracy disappears in that

limit. In the case g = 1 this limit corresponds to the quantum Hall effect when the size

of the torus shrinks to a single point keeping the magnetic flux constant. The geometric

interpretation is that in the present case the Gribov horizon becomes closer and closer

to the origin along the harmonic forms directions, because the gauge transformations

φ(x) = eix·a (3.29)

shift the gauge variable by a constant harmonic form

A
φ = A+ a, (3.30)

and the periodic boundary conditions require a to be on the dual torus. In the infinite

volume limit that torus T 2 becomes a single point because any gauge transformation of

the type (3.29) belongs to GIR2 for any value of a. The only apparent reminiscence of the

degeneracy is the existence of long range correlations in the two point functions of massive

photons [26]. But such correlations are rather associated to some (infinity massive) null

states. In some sense this phenomenon is opposite the Goldstone mechanism, there are

not local physical excitations associated to the long range correlation functions.

In the non-abelian case the pure Chern-Simons theory is also be exactly solvable for

compact Lie groups groups G. The Hilbert space of quantum states for G = SU(N) is

[40]

H0
S2 = C

H0
T 2 = Cn(N,k)

where n(N, k) =
(
N+k−1

k

)
is the number of weights in the fundamental Coxeter domain

Λw

kΛr
⋉W

of SU(N). In the infinite volume limit the quantum Hilbert space also becomes one-

dimensional as in the abelian case.

In topologically massive Yang-Mills theory the spectrum of the Hamiltonian is not

exactly known, but we can get some information from the pure topological phase. In the
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infinite volume limit the vacuum state is unique because the corresponding topological

limit has not degeneracy. The same property holds when the spatial manifold is a two-

dimensional sphere. However, in the case of a two-dimensional torus the degeneracy of

the vacuum is unknown. It is certainly lower than n(N, k) because of the potential term

1

2κ2Λ
||F (A)||2

which breaks in this case the degeneracy of Chern-Simons states. Since this term becomes

irrelevant in the topological limit, we recover the Chern-Simons degeneracy when Λ → ∞.

This illustrates how the existence of a solvable topological phase can shed some light in

the vacuum structure of a full fledged quantum field theory.

It is also interesting to analyze how the dynamic constraints of the Chern-Simons

theory appear in the topological phase of a massive gauge theory. The only constraint

in the massive theory is Gauss law (3.6). However, in the topological limit the ground

states tend to holomorphic functionals ξ(Az) and the operator Az̄ and −2κ−2 δ
δAz

can be

identified in a weak sense. Their expectation values on holomorphic states are equal. In

this way the second class momenta constraints arise in the topological limit in a similar

manner to the quantum mechanical models of section 2. However, in this case we have

an additional constraint Gξ(Az) = 0, which with the above identifications becomes

(ξ1(Az),G ξ2(Az)) ≡ (ξ1(Az), ∗F (Az) ξ2(Az)) = 0 (3.31)

in a weak sense. Therefore ordinary gauge invariance in the topological phase becomes

holomorphic gauge invariance, which is the higher symmetry that makes Chern-Simons

theory solvable.

4 Covariant Functional Integral Approach

In previous sections our analysis of topological quantum theories was based in a canonical

operator formalism. Most of the results can also be derived by path integral methods.

In particular, it is very interesting to see how the main properties of the topological

quantum mechanical systems analyzed in section 2 can be obtained by means of the

path integral approach, which, on the other hand, illustrates the low energy features
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described in the introduction. However, the description of the path integral quantization

will enlarge excessively the content of this notes and will be carried out elsewhere.

In the case of Chern-Simons theory the covariant functional integral method exhibits

some new features which merit a separate discussion. Although the theory is finite and

solvable in the canonical formalism for compact Lie groups in absence of space-time

boundaries and external sources, in the covariant formalism it is simply renormalizable.

The existence of singularities is due to the presence of some unphysical degrees of

freedom in this formalism. Therefore, the analysis becomes non trivial and to some

extent the fluctuations of those unphysical degrees of freedom might veil the topological

nature of the theory.

On the other hand, Witten conjectured that some quantum observables of Chern-

Simons theory provide field theoretical definitions of topological invariants of knots, links

and three-manifolds [39]. This beautiful idea has been pushed forward by different meth-

ods in the canonical formalism [40, 21]. However, the analysis of the conjectures for a

general three-dimensional manifold requires the use of a covariant formalism. Moreover,

the analysis of possible gravitational or framing anomalies is not complete in the canon-

ical formalism because of the special form of space-metric in such a formalism: direct

product of a two-dimensional Riemannian metric and an one-dimensional time scale. For

instance, the induced gravitational Chern-Simons term is not metric dependent for such

metrics, and vanish for some choices of framing. Although, the analysis of those anoma-

lies can be achieved in an indirect way by using topological techniques like topological

surgery, instead of field theoretical techniques, a complete discussion in terms of pure

field theoretical arguments requires the use of a three-dimensional covariant approach.

The first problem in the covariant formalism is the existence of ultraviolet diver-

gences. Therefore, it is necessary to introduce some regularization in order to smooth

the ultraviolet behaviour of the Chern-Simons interaction. We shall use a geometrical

regularization which preserves many of the interesting properties of the model: continuity

of space-time and invariance under framing and gauge transformations.
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4.1 Geometric Regularization

The essential characteristics of geometric regularization are based on the observation

that, because of gauge invariance, the relevant space of covariant field configurations

is also the space of covariant gauge orbits M. Since M is a curved ∞-dimensional

Riemannian manifold the regularization of a functional integral defined over M does

not simply requires a regularization of the action, as in ordinary field theories with flat

configuration spaces, but also a non-trivial regularization of the functional (Riemannian)

volume element. In this way it is possible to obtain a regularization which preserves the

topological properties of continuum approachs and has a non-perturbative interpretation.

Because of the pseudoscalar character of the Chern-Simons action, standard pertur-

bative regularization methods can not be applied. This fact, has recently stimulated

the interest on the application of different perturbative regularization prescriptions to

Chern-Simons theories [27], [41]-[43].

The geometric regularization method proceeds by three steps [42][44].

1) Regularization of the classical action by means of a Yang-Mills term with higher

covariant derivatives:

SΛ(A) =
ik

4π

∫

M3

tr (A ∧ dA+
2

3
A ∧ A ∧A) + k

8πΛ
(F (A), (I +∆A/Λ

2

)nF (A)) (4.1)

2) Regularization of the volume of gauge orbits, det
1/2

∆
0

A = det
1/2

d∗AdA, by Pauli-

Villars method

det
1/2

ΛΛ′∆
0

A = det
−1/2

(I +∆
0

A/Λ
′2)2n+2 det

1/2

∆
0

A(I + (I +∆
0

A/Λ
2

)2n)∆
0

A/Λ
2) (4.2)

and the crucial step

3) Regularization of the volume element of the covariant gauge orbit space M = A/G
in terms of a binuclear Riemannian structure (g0Λ′ , G

1

Λ′ , G
2

Λ′ ) of M. It consists of a Rie-

mannian metric g0Λ′ and two families of selfadjoint trace class operators G
1

Λ′ , G
2

Λ acting

on the tangent spaces of M. The nuclear structure is the basic functional structure

behind the construction of Gaussian measures in Hilbert spaces. The generalization of

this structure turns out to be very relevant for the construction of functional measures

in Hilbert Lie group [45] and arbitrary ∞-dimensional Hilbert manifolds including gauge
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orbits spaces [46]. Geometric regularization is based on the implementation of this con-

struction to the covariant formalism [28]. In this case the binuclear Riemannian structure

can be defined by means of the three Riemannian metrics giΛ′ , i = 0, 1, 2 of M given by

g
i

Λ′(τ, η) = (PAτ̃ , (I +∆A/Λ
′2)miPAη̃) i = 0, 1, 2, (4.3)

for any tangent vectors τ̃ , η̃ of TAA whose projections on M are τ and η, respectively.

Then, the operators Gi
Λ′ : T[A]M −→ T[A]M(i = 1, 2) defined by

g
i

Λ′(τ, η) = g0Λ′(τ, (G
i

Λ′)−1η) (4.4)

are selfadjoint and trace class with respect to g0Λ′ for mi ≥ m0+2, and define a binuclear

Riemannian structure in the orbits space M.

The geometric regularization of the functional integral is given by

∫

M
δµ

g0

Λ′
G

1

Λ′
G

2

Λ′

([A]) det
1/2

ΛΛ′∆
0

A e−SΛ(A) (4.5)

where δµ
g0

Λ′
G

1

Λ′
G

2

Λ′

([A]) is the regularized functional volume element associated to the

binuclear structure (g0Λ′ , G
1

Λ′ , G
2

Λ′), which e.g. in the generalized Landau gauge

d∗A0
(Ac −A0) = 0 (4.6)

reads

δµ
g0

Λ′
G

1

Λ′
G

2

Λ′

(Ac) = δAc det
1/2

c g0ΛΛ′(Ac) det
1/2

c (G
1

Λ′)
−1

det
1/2

c (G
2

Λ′ )
−1

G
1

Λ′ . (4.7)

In the limit (Λ,Λ′) → (∞,∞) we recover the Babelon-Viallet expression [47] for the

functional integral ∫
δAc det

1/2

g(Ac) det
1/2

∆
0

Ae
−S(A) (4.8)

which is equivalent to the standard one obtained by means of Faddeev-Popov mechanism,

because

det
1/2

g(Ac) det
1/2

∆
0

A = detd∗A0
dA.

In this limit the binuclear structure disappears (g0Λ′ , G
1

Λ′ , G
2

Λ′) → (g, I, I) andM becomes

a weak Riemannian manifold with metric g.
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4.2 Finiteness

There are some further restrictions on the exponents of the regulators which are necessary

for consistency. In flat space-times the regularized Green functions are finite if and only

if
n+ 1 = m2,

n > {1,m0,m1
−m0,m1

−m
2
}. (4.9)

Since those finite results are obtained by cancellation of one-loop diverges a complete

formulation of the regularization with non-perturbative interpretation requires the intro-

duction of a non-perturbative auxiliar (gauge dependent) cut-off. Therefore, in order to

recover gauge invariance after the removal of the auxiliar cut-off the exponents of the

regulators must satisfy the following condition [44]

(n+ 1)2 −m2
0 − (m1 −m0)

2 − (m2 −m1)
2 = 0, (4.10)

which guarantees that Slavnov-Taylor identities are satisfied in perturbation theory.

When the conditions (4.9)(4.10) are verified the functional integral is completely reg-

ularized in a global gauge invariant way. There is an infinite family of integer solutions

of the constraint equations (4.9)(4.10) which give rise to consistent geometric regulariza-

tions.

One loop calculation of the Chern-Simons effective action with geometric regulariza-

tion yields [42]

Γ(1)(A) = Γ
(1)
nl (A) + i

∫
tr(α2A ∧ dA+

2

3
α3 A ∧ A ∧A) (4.11)

with

α2 = (
π

2
+

4

3
In)

N

2π2
α3 = (

π

2
+ 2In)

N

2π2

In =

∫ ∞

0

dp
(1 + p2)n

1 + p2(1 + p2)2n

and Γ
(1)
nl (A) being a non-local scalar term associated to a global anomaly.

The fact that α2 6= α3 implies the existence of a finite renormalization of the gauge

field which in not universal [42][44] (AR = Z1/2A, with Z = 1 + 2(α3 − α2) +O(1/k)).

The Chern-Simons charge k is also renormalized by a finite universal additive constant

kR = k + N . Both renormalizations of the gauge field and the coupling constant are
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in agreement with the one loop renormalization of gauge transformations and Slavnov-

Taylor identities [42][44]. Although we know by general symmetry arguments that the

theory is finite to any order in perturbation theory [48], the explicit renormalizations ob-

tained above are characteristic of all regularizations involving a Yang-Mills term which

breaks the pure pseudoscalar character of the action. In particular, the renormaliza-

tion of the Chern-Simons coupling constant makes possible the identification of Witten’s

charge with the bare charge in the definition of topological invariants. The calculation

of the Wilson loop expectation value for an unknotted loop up to sixth order in pertur-

bation theory [50] shows the agreement of the above prescription with Witten’s results

4. A two loop calculation in the case n = 0 with an auxiliar dimensional regularization

recently carried out also shows that there are not additional corrections to the value of

the renormalized charge [52], which presumably indicates that the same result holds to

any order of perturbation theory in geometric regularization.

4.3 Metric dependence

Let us now analyze the metric dependence of the quantum Chern-Simons theory in the

framework of geometric regularization. Although the classical lagrangian is metric inde-

pendent a metric dependence might appear in the quantization process from the func-

tional measure δAc [53] or the gauge fixing condition because both are metric dependent.

Moreover, geometric regularization is defined by a binuclear Riemannian structure of the

orbits space which is based on the space-time metric and this dependence could remain

even after the removal the ultraviolet regulators (Λ,Λ′ → ∞).

In order to analyze this dependence we look, as in sections 2 and 3, at the most

sensitive observable under changes of space-time metrics: the partition functional.

The one loop contribution given by

Z(1)(g) =
det1/2c (I +∆1/Λ′2)n+1 det1/2

(
∆0/Λ2(I +∆0/Λ2)2n + 1

)
det1/2 ∆0

det1/2c [∆1/Λ2(I +∆1/Λ2)n + i ∗ d] det1/2(I +∆0/Λ′2)2n+2

(4.12)

4Those results are obtained using the renormalized correlation functions of the Chern-
Simons theory (4.11). A similar calculation in the framework of geometric regularization
leads to a slightly different metric dependent results [51]
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in the generalized Landau gauge is finite and can be evaluated in the weak limit approx-

imation gµν = δµν + hµν . The result is of the form [54]

Z(1) = Z(1)
0 (g)e

c1
∫
M3

√
g+c2

∫
M3

√
gR+

ic3
4π

∫
M3

Tr(ω∧ω+2/3ω∧ω∧ω)+O(1/Λ)
(4.13)

where Z(1)
0 (g) contains the non-local terms induced by the global framing anomaly [39]

and non-perturbative contributions generated by the existence of zero modes [54]. We

remark that once the Green functions are finite in flat space-times they remain finite for

arbitrary space-time metrics. Therefore there are no further restrictions on the parame-

ters of geometric regularization.

The only terms which remain finite in the ultraviolet limit, Λ,Λ′ → ∞, are the gravi-

tational Chern-Simons term c3 and Z(1)
0 (g). The other terms would require counterterms

to cancel their divergent contributions, c1 = O(Λ3) +O(Λ′3) and c2 = O(Λ) +O(Λ′).

The explicit calculation of the coefficients of the induced gravitational action (4.13)

yields the following values

c1 = 0, c2 =
N2 − 1

16
(αΛ − π(n+ 1)Λ′), c3 =

N2 − 1

24
(4.14)

for SU(N) in the generalized Landau gauge (4.6), with

α =

∫ ∞

0

dp
1 + 2n(1 + p2(1 + p2)2n−1)

1 + p2(1 + p2)2n
. (4.15)

The coefficient c2 of the Einstein-Hilbert term depends on the parameters of the

regularization and can be cancelled by a suitable choice of the regulators masses, Λ′ =

αΛ/π(n+1). However, the coefficient of the Chern-Simons term is universal and cannot

be cancelled by any choice of the parameters of the regularization.

The value of c3 = (N2 − 1)/24 is in agreement with the exact value conjectured by

Witten

c3 =
k(N2 − 1)

24(k +N)
=
N2 − 1

24
(1− N

k
+O(

N2

k2
)). (4.16)

A two loop calculation of c3 has been recently carried out in a different perturbative

regularization scheme [49]. The result gives the second term of Witten’s expansion (4.16),

but in such a scheme the first term is missing.

In the geometric regularization scheme there is no framing anomaly because the

change of the gravitational Chern-Simons term under non-trivial framing transforma-

tions is compensated by the change of the non-local part of Z(1)
0 (g). In fact, geometric
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regularization preserves framing independence explicitly. But, consequently, the parti-

tion function becomes metric dependent. The cancellation of this dependence can only

be achieved by the addition of a finite gravitational Chern-Simons counterterm which

induces a framing anomalous behaviour of the quantum partition function. In this sense

metric dependence can be traded by a framing anomaly.

The one loop contributions to the partition function Z(1)(g) can also be exactly

calculated beyond the weak field expansion for some particular space-time backgrounds

(S3,Σ × S1) [54]. The results confirm the values of the coefficients (4.16) of the local

terms of the induced action: cosmological, Einstein-Hilbert and gravitational Chern-

Simons terms, and provide explicit expressions for the non-local terms of Z(1)
0 (g). In

the case of a manifold of the form Σ × S1 the metric dependence of those non-local

terms cancels out with that of the non-perturbative contributions of Z(1)
0 (g), up to a

constant factor (vol M3)
1/2 [55] which is genus independent [54]. This fact stresses

the topological character (metric independent) of Chern-Simons theory in the canonical

formalism. Because of the direct product structure of the space-time metric in this

formalism the gravitational Chern-Simons term is not metric dependent and there always

exist a framing where it vanishes. Once the metric dependent factor is eliminated the

partition function of the abelian theory gives account of vacuum degeneracy Z(1)(g) ∼ kg

[54]. In the non-abelian case it gives only the leading approximation to the exact vacuum

degeneracy [54]. It will be very interesting to know whether higher order perturbative

calculations agree with higher order corrections to the exact formula.

Although there is not any apparent symmetry argument behind the choice Λ′ =

αΛ/π(n+1) of the masses of the regulators, it is a necessary condition to cancel an explicit

metric dependence which arises from the quantum fluctuations. The partition function is

not the only observable which picks up quantum metric dependent contributions [51]. In

general, it is always possible to factorize the metric dependent contributions and obtain

a topological invariant, but this procedure has to be carried out very carefully because

some relevant topological information can also be lost by a crude renormalization. This

necessity of renormalization introduces some ambiguities in the definition of topological

invariants in Chern-Simons theory.
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