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One of the motivations for the recent interest on the study of Chern-Simons theories is based on its
rich topological structure, which opens new possibilities for the definition of topological invariants of knots,
links and three-dimensional manifolds. Because of the general covariant properties of the classical theory it
is natural to expect that upon quantization it would provide quantum field theoretical definitions for those
invariants. This beautiful application was first remarked by Schwarz in the case of abelian Chern-Simons
theories [1] and more recently generalized by Witten for non-abelian Chern-Simons theory [2].

However from a field theoretical viewpoint it is always tantalizing to see whether the process of quan-
tization preserves all the classical symmetries and there are not gravitational or topological anomalies. In
the canonical formalism it turns out to be case [3]. However, the study of possible gravitational or framing
anomalies is not complete in the canonical formalism because of the special form of space-metric in such
a formalism: direct product of a two-dimensional Riemannian metric and an one-dimensional time scale,
e.g. the induced gravitational Chern-Simons term is not metric dependent for such metrics, and vanish for
some choices of framing. Therefore, the study of this problem for arbitrary three-dimensional manifolds
requires a deeper understanding of the quantization of field theories on arbitrary space-time manifolds. Al-
though, the analysis of the anomalies can be achieved in an indirect way by using topological techniques like
topological surgery, a complete discussion in terms of pure field theoretical arguments requires the use of a
three-dimensional covariant approach.

The theory is finite and solvable in the canonical formalism for compact Lie groups in absence of space-
time boundaries and external sources (spatial punctures, local matter, etc.), but in the covariant formalism
it is simply renormalizable. The existence of singularities is due to the presence of some unphysical degrees
of freedom in this formalism. Therefore, the analysis becomes non trivial and to some extent the fluctuations
of those unphysical degrees of freedom might veil the topological nature of the theory.

The standard mathematical methods used in the analysis of quantum anomalies by means of index
theorems (ζ-function and heat kernel) only hold for one-loop generated anomalies. Since in this case grav-
itational anomalies might also be generated by higher order corrections it becomes necessary to consider
general methods of quantum field theory. Because of the pseudoscalar character of the Chern-Simons action,
standard perturbative regularization methods can not be applied. This fact, has recently stimulated the
interest on the application of different perturbative regularization prescriptions to Chern-Simons theories
[4]-[6],[8].

We shall use a geometrical regularization which preserves many of the interesting properties of the model:
continuity of space-time and invariance under framing and gauge transformations. The regularization is based
on the observation that, because of gauge invariance, the relevant space of covariant field configurations is
also the space of covariant gauge orbits M. Since M is a curved ∞-dimensional Riemannian manifold
the regularization of a functional integral defined over M does not simply requires a regularization of the
action, as in ordinary field theories with flat configuration spaces, but also a non-trivial regularization of
the functional (Riemannian) volume element [9]. In this way it is possible to obtain a regularization which
overcomes the problem of overlapping divergences usually associated to the regularization by means of higher
covariant derivatives and Pauli-Villars ghosts, preserves the topological properties of continuum approaches
and has a non-perturbative interpretation (see Refs. [5][7]).

In the Landau gauge d∗A0
(Ac − A0) = 0 the geometrically regularized partition function reads
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where g0
Λ′ represents a strong, covariant metric of Sobolev type on the orbit space M, Gi

Λ are trace class
operators with respect to the metric g0

Λ′ , the gauge invariant factor det1/2
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A stands for the regularized
volume of the gauge orbits and, finally, SΛ is the action of Chern-Simons regularized by the addition of a
Yang-Mills term with higher covariant derivatives.



In flat space-time, for appropriate choices of the regulating operators, the regularization is consistent
and preserves gauge invariance. One loop fluctuations generate in flat space-times a finite renormalization
[5] of the Chern-Simons coupling k → k + N (for SU(N)), which is expected to hold in higher orders in
perturbation theory [10].

However to analyse the existence of diffeomorphisms anomalies we must carry out the quantization
of the theory in arbitrary metric backgrounds and look at the possible metric dependence of the resulting
theory. A metric dependence of the Wilson loop expectation values has been detected in Refs. [11]. However,
the physical observable which is most sensitive to a change of space-time metric is the partition function
Z. This is due to the fact that Z contains the leading cubic divergences, which also generate the loss
of framing independence associated to the non-trivial transformation of two-dimensional partition function
under conformal transformations in the two-dimensional conformal field theories.

Although the classical lagrangian is metric independent a metric dependence might appear in the par-
tition function from the functional measure δAc [12] or the gauge fixing condition because both are metric
dependent. Moreover, since geometric regularization is defined by means of a binuclear Riemannian struc-
ture of the orbit space which depends on the space-time metric, the metric dependence generated by the
regularization could remain even after the removal the ultraviolet regulators (Λ,Λ′ → ∞).

The one loop contribution given by
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in the generalized Landau gauge (d∗A0
(A−A0) = 0) is finite and can be evaluated in the weak limit approx-

imation gµν = δµν + hµν . The result is of the form [13]
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where Z(1)
0 (g) contains the non-local terms induced by the global framing anomaly [2] and non-perturbative

contributions generated by the existence of zero modes [13]. We remark that once the Green functions are
finite in flat space-times they remain finite for arbitrary space-time metrics. Therefore there are no further
restrictions on the parameters of geometric regularization.

The only terms which remain finite in the ultraviolet limit, Λ,Λ′ → ∞, are the gravitational Chern-
Simons term c3 and Z(1)

0 (g). The other terms would require counterterms to cancel their divergent contri-
butions, c1 = O(Λ3) + O(Λ′3) and c2 = O(Λ) + O(Λ′).

The explicit calculation of the coefficients of the induced gravitational action (3) yields the following
values
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for SU(N) in the generalized Landau gauge, with
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The coefficient c2 of the Einstein-Hilbert term depends on the parameters of the regularization and can
be cancelled by a suitable choice of the regulators masses, Λ′ = αΛ/π(n + 1). However, the coefficient of the
Chern-Simons term is universal and cannot be cancelled by any choice of the parameters of the regularization.

The value of c3 = (N2 − 1)/24 is in agreement with the exact value conjectured by Witten
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A two loop calculation of c3 has been recently carried out in a different perturbative regularization scheme
[8]. The result gives the second term of Witten’s expansion (6), but in such a scheme the first term is missing.

In the geometric regularization scheme there is no framing anomaly because the change of the gravita-
tional Chern-Simons term under non-trivial framing transformations is compensated by the change of the
non-local part of Z(1)

0 (g). In fact, geometric regularization preserves framing independence explicitly. But,
consequently, the partition function becomes metric dependent. The cancellation of this dependence can
only be achieved by the addition of a finite gravitational Chern-Simons counterterm which induces a framing



anomalous behavior of the quantum partition function. In this sense metric dependence can be traded by a
framing topological anomaly.

The one loop contributions to the partition function Z(1)(g) can also be exactly calculated beyond the
weak field expansion for some particular space-time backgrounds (S3,Σ × S1) [13]. The results confirm
the values of the coefficients (6) of the local terms of the induced action: cosmological, Einstein-Hilbert
and gravitational Chern-Simons terms, and provide explicit expressions for the non-local terms of Z(1)

0 (g).
In the case of a manifold of the form Σ × S1 the metric dependence of those non-local terms cancels out
with that of the non-perturbative contributions of Z(1)

0 (g), up to a constant factor (vol M3)1/2 [1] which is
genus independent [13]. This fact stresses the topological character (metric independent) of Chern-Simons
theory in the canonical formalism. Because of the direct product structure of the space-time metric in this
formalism the gravitational Chern-Simons term is not metric dependent and there always exist a framing
where it vanishes. Once the metric dependent factor is eliminated the partition function of the abelian
theory Z(1)(g) ∼ kg+1 gives account of vacuum degeneracy kg [13]. In the non-abelian case it gives only
the leading approximation to the exact vacuum degeneracy [13]. It will be very interesting to know whether
higher order perturbative calculations agree with higher order corrections to the exact formula.

Although there is not any apparent symmetry argument behind the choice of the masses of the regulators
Λ′ = αΛ/π (n + 1 ), it is a necessary condition to cancel an explicit metric dependence which arises
from the quantum fluctuations. The partition function is not the only observable which picks up quantum
metric dependent contributions [11]. In general, it is always possible to factorize the metric dependent
contributions and obtain a topological invariant, but this procedure has to be carried out very carefully
because some relevant topological information can also be lost by a crude renormalization. This necessity
of renormalization introduces some ambiguities in the definition of topological invariants in Chern-Simons
theory.
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